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LETTER TO THE EDITOR 

Surface roughening for two-dimensional percolation at 
p = l  

H Franket 
Institut fur Theoretische Physik der Universitat Koln, Ziilpicher Strasse 77 ,  D-5000 Koln 
41, Federal Republic of Germany 

Received 8 July 1981 

Abstract. We introduce [lo] and [ l l ]  interface models for percolation on the square lattice 
and on the triangular lattice. In the case of p = 1 ( p  probability) only the [lo] models show 
surface roughening. An analytic calculation gives a square-root divergence for the interface 
width in the thermodynamic limit. 

Surface roughening, especially the occurrence of a roughening transition, is not only a 
well known phenomenon of critical behaviour physics as observed for interfaces of the 
3D Ising model (Weeks et a1 1973, Gilmer et a1 1974), crystal growth models (see 
Weeks 1980), liquid-vapour systems or binary fluids (see Wallace 1980). It appears 
also in gauge theory models (Drouffe and Zuber 1981, Liischer 1981, Munster and 
Weisz 1981, Hasenfratz et a1 1981), and experimentalists have detected a possible 
roughening transition in helium too (see Balibar and Castaing 1980). 

Our interest is concentrated on surfaces of percolation clusters. Concerning the 
square lattice, we found a rough surface for all p above pc ,  but no roughening transition, 
by Monte Carlo simulations (Franke 1980). In analogy with the 2D Ising model, a 
square-root divergence in the interface width was found to be quite probable. The 
purpose of this Letter is to remove the remaining uncertainty on this point, at least in the 
case of p = 1. 

In site percolation perimeters are unoccupied next-neighbour sites of occupied sites. 
Their number t corresponds to the energy E for thermal phenomena (Stauffer 1979). 
At p = 1 there are only perimeters at the surface of the cluster. They separate its 
interior from the outside region and can be identified with the surface energy. As the 
case p = 1 corresponds thermally to T = 0 we are speaking of the ground state and its 
degeneracy. If a variety of configurations with minimal perimeter t,,, exists for an 
interface system, we have a degenerate ground state and surface roughening may occur. 
We deal first with the square lattice, and then with the triangular lattice. A calculation is 
sketched which confirms the presumed square-root divergence in the thermodynamic 
limit. 

We consider first the square lattice in the high-density limit. Figure 1 shows types of 
interface configurations of the square lattice. In ( a )  and ( b )  the direction perpendicular 
to the interface is given by [lo], in (c) and ( d )  by [ll]. As can be seen, variations of the 
straight configuration are possible without changing the perimeter number, but this is 

t Present address: Bach 16, D-5204 Lohmar 1, Germany. 
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Figure 1. Interface configurations of the square lattice, indicated by crosses (occupied sites), 
circles (perimeters) and dots (empty sites). Straight configuration of the [lo] model: length 
of the system L = 11, number of perimeters t =  11 ( a ) ,  another [lo] configuration L = 11, 
t = 11 ( b ) ,  straight [ l l ]  configuration L = 16, t = 8 (c), another Ell] configuration L = 16, 
t = 10 ( d ) .  

valid only for the [lo] interface model. In the case of the [ l l ]  model the straight 
configuration (figure l(c)) is the only possible one for p = 1 (if one neglects some 
configurations due to boundary effects with interface width less than or equal to unity). 
The ground state of this model is not degenerate and there is no surface roughening. 
This, however, is not true for p < 1, aLshown by our Monte Carlo simulations (figure 2). 
Even for p = 0.99 we found a clear JL-law for the interface width and so far there exists 
no difference from the [lo] model?. 

Concerning this [lo] model, it is our intention to confirm analytically the &law in 
the case of p = 1, which was suggested by our previous Monte Carlo work (Franke 
1980). In figure 3(a)  all interface configurations with minimal perimeter number are 
listed for systems of length L = 2 and L = 3, where free edges are applied as boundary 
conditions. It is obvious that every configuration of the L-system generates three 
configurations of the L + l-system by enlarging the L-configuration on the right in the 
manner illustrated (figure 3(b) ) .  

We define the interface width of a configuration as the difference in height between 
the highest and lowest surface sites. (For example the configurations in figure l(a) and 
( b )  have widths 0 and 2, respectively.) Let NL be the sum of the interface widths of all 
3L-1 configurations of an L-system with minimal perimeter number t = L. Then we 
obtain for the mean interface width$ 

(1) 

t The situation is quite similar to the square Ising model: the antiferromagnetic [lo] model, for example, 
corresponds to the I l l ]  percolation model and is not degenerate; surface roughening occurs only for T >  0 
(Weeks et a1 1973), whereas the [ll] model shows surface roughening already for T = 0. 
$Note that this definition differs from that in our Monte Carlo simulations, where the mean square distance 
from the surface centre of the density profile was taken, 
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Figure 2. Monte Carlo data of the square-lattice [ll] model: log-log plots of interface width 
W against system length L at fixed concentration p .  The broken line gives a square root law. 
Data for [ lo]  surfaces were published before (Franke 1980). 
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Figure 3. Complete set of [lo] interface configurations with minimal perimeters for the 
L = 2 and L = 3 square-lattice system with free edges ( a ) .  Generation of L + l-configura- 
tions by L-configurations ( b ) .  

Consider configurations which have the last site on the right at the highest or lowest 
level. If JL is the number of these configurations, then (setting N I  = 0, J1 = 2,  ,counting 
the straight-line configuration always twice in the enumeration of JL) it follows that 

NL+1= 3N.5 + JL ( L  = 1 , 2 , 3 , .  I .)* ( 2 )  

Moreover, we define numbers BL by the additional recursion relations 

J L + ~  =3JL-2BL-l (L = 1 , 2 ,  3 , .  . .). ( 3 )  

Formulating the problem in terms of infinite matrices and by applying some graphic 
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techniques it can be shown that 

Bo = B1= 1, 
L-2 

l = O  
BL = BL-1+ 1 BlBL-2-1 ( L  = 2,3 ,  . . .). (4) 

An equation for the generating function B ( x )  = B L x L  can be derived by (4) ,  

x ~ ( B ( x ) ) ~ - ( ~ - x ) B ( x ) + ~  =o, ( 5 )  

which is known to determine the generating function of the generalised Ballot numbers 
(Sloane 1973, Motzkin 1948). The solution of ( 5 ) ,  satisfying the condition B ( 0 )  =Bo = 
1, is 

(6) B ( x )  = [ 1 - x - ( 1  - 2~ - 3~’)’/’]/(2~’).  

To obtain the Ballot numbers we expand (6) into powers of x ,  

where CL are the Catalan numbers (Sloane 1973), 

( 2 L ) !  
( L  = 0,  1 , 2 ,  . . .), 

C, = ( :)/(L+ 1)  = ( L ! ) ~ ( L  + 1)  

and [ L / 2 ]  means the integer part of L / 2 .  By some simple but tedious mathematical 
arguments, based on Stirling’s formula, one can show that the asymptotic behaviour of 
the Ballot numbers is 

BL a 3LL-3/2 asL+co. ( 9 )  
Solving the recursion relations ( 3 )  for JL in terms of BL and using Z?=o B L / ( 3 L )  = B(4) = 
3 (following from (6)) it may be shown that JL a 3LL-1/2. A similar procedure due to ( 2 )  
yields NLa3LL”2.  Hence, from the definition ( 1 )  we find the presumed square-root 
divergence 

wLaL”2 asL-,co (10) 
for the interface width of the square lattice in the thermodynamic limit. 

We now consider the .triangular lattice for p = 1. Figure 4 gives corresponding 
configurations for the triangular lattice. Obviously, the [ 101 model is degenerate again 
(figure 4 ( a ) ,  (b ) )  and thus yields the only candidate for surface roughening, if p = 1 is 
assumed. An analogous analysis can be performed. Instead of equations ( l ) ,  (2) ,  (3) ,  
(7)  we find in this case 

WL = NL/2L-1, (11)  

for L = 2A, 
for L = 2h + 1 ( A  =0,  1 , 2 , ,  , .), CA 

BL=Io 

where CA are the Catalan Numbers (8). Applying Stirling’s formula, we obtain 
immediately CA a4AA-3/2 ,  whence BL a 2LL-3/2 as L (even) + 00, and we are led to (10) 
again. 
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Figure 4. Interface configurations of the triangular lattice. ‘Straight’ [ 101 configuration 
L = 14, t = 14 ( a ) ,  another [lo] configuration L = 14, t = 14 ( b ) ,  straight [ l l ]  configuration 
L = 20, t = 10 (c), another Ell] configuration L = 20, t = 12 (4. 

To make these results more obvious we add two plots of d ln  WL/dlnL= 
In ( WL/ WL-l)/ln [L/ (L  - l)] as functions of L, which clearly tend to 0.5 as L + 03 (figure 
5 ) .  The data up to L = 500 were produced by simple computer algorithms executed in a 
time less than one second. 

For both the square lattice and the triangular lattice we have introduced a [lo] and 
[ll] interface model. We pointed out that only the [lo] models are degenerate and 

1 

Figure 5. Plots of d In WJd In L as a function of 1/L for the square lattice (a) and the 
triangular lattice ( b ) .  
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therefore only these models can show surface roughening if we assume p = 1. Using a 
differentdefinition of the interface width WL we found again a square-root divergence 
W, a dL in the thermodynamic limit. Thus our analytic calculation at p = 1 agrees with 
the Monte Carlo results for p s 1. Moreover, for intermediate L the deviations from 
the asymptotic result could be studied. 

We would like to thank D Stauffer for useful discussions and S Samrei of Siemens AG 
for support. 
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